出现的问题的描述

序言: 程序需要在每秒中处理10000条左右行情数据,这样的并发量真的是很高 所以在一般的通用编程模型下会产生怪异的问题

问题描述: 程序在本地运行大概100M内存的消耗 并无大碍 程序在windowsserver中运行出现内存跳涨,基本是没几秒钟就跳100K左右内存,而且内存不会降,只会涨.

问题分析: 1.是否是使用的内部zmq消息队列深度堆积导致? 经过排查和api系数调整不是这个原因.

2.是否是因为消息处理慢导致?

注释掉回到函数中自己写的代码,程序居然不在内存暴涨.排除法找问题太容易了. 经过注释的方式排出代码,可能由于回调函数处理过慢,导致消息堆积. 具体是因为服务器上运行服务过多,锁分配的时间片就少,需要的处理时间超时,错过第三方动态库了唯一一次的资源释放的机会,导致内存泄漏.

解决办法: 采用异步方式,对数据处理,尽量减少在回调函数中占用的时间,因为每3秒要调用上万次回调函数,其实压力还是很大的.采用了线程池 异步调用 使用lambda表达式采用[=] 拷贝方式进行参数传递.尽量在回到函数内减少调用的时间.

顺便贴出来基于c++11的线程池代码

#pragma  once
#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>

class ThreadPool {
public:
    ThreadPool(size_t);
    template<class F, class... Args>
    auto enqueue(F&& f, Args&&... args)
        ->std::future<typename std::result_of<F(Args...)>::type>;
    ~ThreadPool();
private:
    // need to keep track of threads so we can join them
    std::vector< std::thread > workers;
    // the task queue
    std::queue< std::function<void()> > tasks;

    // synchronization
    std::mutex queue_mutex;
    std::condition_variable condition;
    bool stop;
};

// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
    : stop(false)
{
    for (size_t i = 0; i < threads; ++i)
        workers.emplace_back(
            [this]
    {
        for (;;)
        {
            std::function<void()> task;
            {
                std::unique_lock<std::mutex> lock(this->queue_mutex);
                this->condition.wait(lock,
                    [this] { return this->stop || !this->tasks.empty(); });
                if (this->stop && this->tasks.empty())
                    return;
                task = std::move(this->tasks.front());
                this->tasks.pop();
            }

            task();
        }
    }
    );
}

// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
    -> std::future<typename std::result_of<F(Args...)>::type>
{
    using return_type = typename std::result_of<F(Args...)>::type;

    auto task = std::make_shared< std::packaged_task<return_type()> >(
        std::bind(std::forward<F>(f), std::forward<Args>(args)...)
        );

    std::future<return_type> res = task->get_future();
    {
        std::unique_lock<std::mutex> lock(queue_mutex);

        // don't allow enqueueing after stopping the pool
        if (stop)
            throw std::runtime_error("enqueue on stopped ThreadPool");

        tasks.emplace([task]() { (*task)(); });
    }
    condition.notify_one();
    return res;
}

// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
    {
        std::unique_lock<std::mutex> lock(queue_mutex);
        stop = true;
    }
    condition.notify_all();
    for (std::thread &worker : workers)
        worker.join();
}
 


// create thread pool with 4 worker threads
ThreadPool pool(4);

// enqueue and store future
auto result = pool.enqueue([](int answer) { return answer; }, 42);

// get result from future
std::cout << result.get() << std::endl;